Morphology of retinal axons induced to arborize in a novel target, the medial geniculate nucleus. I. Comparison with arbors in normal targets.
نویسندگان
چکیده
Ferret retinal axons can be induced to innervate the medial geniculate nucleus (MGN) by a combination of brain lesions early in development. Our previous work suggests that the retinal ganglion cells responsible for this plasticity are W cells. The present study continues this work with a morphological investigation of normal retinal ganglion-cell axons and retinal ganglion-cell axons induced to arborize in the MGN. Retinal axons were bulk filled with horseradish peroxidase placed in the optic tract, and individual axons were serially reconstructed from sagittal sections. The control population consisted of fine-caliber axons arborizing in the superior colliculus (SC) and in the ventral C laminae of the lateral geniculate nucleus (LGN) of normal ferrets. We also compared the axons in the MGN of lesioned ferrets to intracellularly filled X and Y axons from normal ferrets as reported by Roe et al. ([1989] J. Comp. Neurol. 288:208). We have found that the retino-MGN axons in the lesioned ferrets do not resemble X or Y axons in normal ferrets in axon diameter, arbor volume, bouton number, or bouton density. However, they do resemble the fine-caliber, presumed W axons arborizing in the C laminae of the LGN and in the SC of normal ferrets. Thus, this study, in combination with previous studies, suggests strongly that W retinal ganglion cells are responsible for the retinal input to the MGN in lesioned animals. In addition, we find that the retino-MGN axons are of two types, branched and unbranched, which may correspond to different subtypes of retinal W cells.
منابع مشابه
The Journal of Comparatiit Neurology
The lateral geniculate nucleus of the ferret contains not only eye-specific layers, but a further subdivision of layers A and A1 into inner and outer sublaminae that contain, respectively, ON-center and OFF-center cells (Stryker and Zahs, '83). To study how the arbors of single retinal ganglion cell axons correlate with these cellular divisions, we have examined the morphology of physiologicall...
متن کاملBrainstem inputs to the ferret medial geniculate nucleus and the effect of early deafferentation on novel retinal projections to the auditory thalamus.
Following specific neonatal brain lesions in rodents and ferrets, retinal axons have been induced to innervate the medial geniculate nucleus (MGN). Previous studies have suggested that reduction of normal retinal targets along with deafferentation of the MGN are two concurrent factors required for the induction of novel retino-MGN projections. We have examined, in ferrets, the relative influenc...
متن کاملExperimentally induced retinal projections to the ferret auditory thalamus: development of clustered eye-specific patterns in a novel target.
We have examined the relative role of afferents and targets in pattern formation using a novel preparation, in which retinal projections in ferrets are induced to innervate the medial geniculate nucleus (MGN). We find that retinal projections to the MGN are arranged in scattered clusters. Clusters arising from the ipsilateral eye are frequently adjacent to, but spatially segregated from, cluste...
متن کاملLaminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers.
Retinal ganglion cells (RGCs), which transfer information from the eye to the brain, are heterogeneous in structure and function, but developmental studies have generally treated them as a single group. Here, we investigate the development of RGC axonal and dendritic arbors using four mouse transgenic lines in which nonoverlapping subsets of RGCs are indelibly labeled with a fluorescent protein...
متن کاملTHE JOURNAL OF COMPARATIVE NEUROLOGY 354:583-607 (1995) Morphology of Physiologically Identified Retinal X and Y Axons in the Cat’s Thalamus and Midbrain as Revealed by Intraaxonal Injection of Biocytin
Prior morphological studies of individual retinal X and Y axon arbors based on intraaxonal labeling with horseradish peroxidase have been limited by restricted diffusion or transport of the label. We used biocytin instead as the intraaxonal label, and this completely delineated each of our six X and 14 Y axons, including both thalamic and midbrain arbors. Arbors in the lateral geniculate nucleu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 349 3 شماره
صفحات -
تاریخ انتشار 1994